노지고추재배중 고추의 어린잎과
열매가 쪼글쪼글하고 열매도
곡과와 쪼글쪼글한 열매가너무많아요 원인이궁금해요
참고로 관수시설과
응애는 없으며
포장전체를 멀칭했으며
추비 엽면시비로 칼슘제 아미노산
붕소 마그네슘등 미량요소가 첨가된
영양제도 살포하고 뿌리발근제도
관주했으며 물도충분히 공급했지만
개선이 안됩니다 모종은 적정시기에
심었고 어릴때부터 시작되었으며
착과가 나무크기에비례해서 너무많이 달려서 칼슘부족현상과 순멎이
현상으로 있다가 현재는 익은고추를
3번째 따고나니 새순이 제법자라고
키도자라고 있지만 곡과와쪼글쪼글한 잎은 개선이안됨
방제약은 탄저병 응애,총채약과
진딧물 침투제 혼합살포
21년 8월 15일
1
질소에 관한 내용이구요
내용이 좀 길지만 나름 정리해보았습니다.
내용중 상이한 내용도 있을 수 있겠지만
각자 참고하시면 좋을 듯 해서 게시해 봅니다.
비료에서 가장 많이 사용되는 중요 다량요소(원소)는 N(질소), K(가리 or 칼륨), P(인) 등 3요소이다.
이 N(질소), K(칼륨), P(인)가 모든 작물에 아주 중요하고 없어서는 안 될 뼈대 인 것이다.
물론 이를 포함하여 작물이 자라는 데 필요한 영양소는 17종인데 탄소, 수소, 산소는 공기중에서 자연적으로 공급되어지기에 나머지 14개 원소는 꾸준히 관심을 가져야 할 것이다.
모든 복합비료이든 단용비료이든 들어있는 요소들은 주기율표의 원소로 생산이 된다.
비료를 만들어내는 원소중에 질소는 작물의 외형적 성장에 있어서 필수불가결한 원소이며 질소비료가 생기고 나서 농작물의 생산량이 세계적으로 폭팔적으로 늘어나게 됨.
복합비료는 질소(N)을 기준으로 가리(K) 또는 인(P)를 혼합하여 생산되는 비료이고
단용비료는 N, P, K 중 한 가지 성분만 들어 있는 비료를 말한다.
예로 가리(K, 칼륨)에 마그네슘(Mg), 칼슘(Ca), 황(S) 등이 혼합되어 있어도
N, K, P중 K(칼륨)이 한 가지 들어 있으니 단용비료라 칭한다.
자 그럼 이제부터 비료의 3대 요소인 N(질소), P(인), K(칼륨)에 대하여
그 특성과 작물에 대해 알아보는데 워낙 자료가 방대하여 오늘은 N원소에 대해서만
기술하도록 하겠다.
사실 질소가 없으면 비료라 할 수 없을 정도로 아주 중요한 비료의 원소이다.
[ 질소(N) - Nitrogen ]
○Nitre(초석) + genes(생긴다) 합성어
○녹는점 -210℃
○끓는점 -195.79℃
○주기율표에서 원자번호 7번에 해당하는 비금속 화학 원소
(2주기 15족에 속한 원자)
○주기율표에서 플루오린, 산소, 염소 다음으로 전기음성도가 높은 원소
○질소는 탄소, 산소와 다중 결합을 형성함
지구 대기 중에 산소, 탄소, 수소에 이어 가장 많이 존재함
(대기 공기 부피 중 78%를 차지, 무독성, 무인화성, 비활성 기체)
○원소 두 개가 삼중 결합으로 매우 강하게 연결된 이원자 분자로 공기중에 존재
○무색, 무취, 무미한 기체
○지구상 모든 생명체에서 발견되는 원소
(물론, 사람 몸을 이루는 화학원소)
○지구 생태계 유지에 매우 중요한 원소
○공업적으로 매우 중요한 화학 약품들이 질소 원자를 바탕으로 함
(암모니아, 질산, 유기 질산염, 사이안화물 등이 질소 원자를 가지고
있으며 이중 암모니아와 질산염은 비료 산업에서 매우 중요한 질소화합물임)
[ 질소가 작물에 끼치는 영향 ]
가) 질소는 작물에게 대표적 필수 영양 원소로 작물의 외형적 몸집(뿌리, 줄기, 잎 등)을 키우기 위한 절대적인 원소이다.
즉, 잎 성장과 크기를 좋게 만들어내어 준다.
※ 물론 뿌리, 줄기, 잎 등의 성장은 질소만의 효과가 아님.
식물 성장이 진행되는 만큼 튼튼하게 자라기 위해서는 세포막이 튼튼해야 하고
세포와 세포간 조직의 튼튼함이 이루어져야 하는데 여기에 관여하는 영양 원소는 칼슘임.
※ 따라서 작물의 성장 초기에는 질소와 함께 칼슘이 필요함.
질소와 칼슘이 함께 들어있는 비료가 바로 질산칼슘 비료임
※ 하지만 이러한 영양 원소를 운반하는 역할을 가리(칼륨)임.
나) 인체로 예를 들자면 질소는 인간에게 단백질 생성 역할을 해준다.
사람의 몸에 있는 단백질에도 질소가 들어 있다.
다) 작물은 뿌리를 통해 얻은 질소(N)로 아미노산·단백질을 만든다.
(단백질을 가수분해 하게 되면 아미노산과 암모니아가 남는다.)
라) 그러나 질소를 과잉 시비하여 뿌리에서 과잉 흡수율이 진행되면
다양한 병해가 발생한다.
※ 과도한 질소 흡수 시에는 식물의 세포벽은 그대로인테 세포 속의 세포질만 늘어나
세균, 바이러스, 박테리아 등의 침입이 쉬워진다.
※ 질소는 다른 요소들과 결합하여 고형화 되어 있지 않을 경우
동·식물은 이용(흡수)을 할 수 없게 된다.
※ 질소 성분 고형화 시키는 방법
1. 고온에 수소(H)와 결합 → 암모니아 생성 → 단점 : 휘발성이 강함
→ 암모니아를 이산화탄소와 결합 → 알갱이(고형화)물질로 생산 → 요소생산
2. 암모니아와 황산을 결합 → 황산암모늄 생성 → 유안(황안 즉, 황산암모늄) 생산
※ N원소 결합방법
물질(원소)의 촉매제 + 고압 + 고열이 필요
단, 이렇게 결합시킨 물질도 빛과 공기, 열, 수분, 미생물 등에 의해 다른 물질로
변하거나 분해되기 쉽다.
마) 과다시비의 경우 토양 산성화 진행
→ 유안(황산암모늄)비료를 과다 시비의 경우
→ 요소비료를 과다 시비의 경우 염류집적을 일으키게 됨.
바) 과잉 흡수의 경우 잎이 진한 녹색으로 변하기 시작하며 주체할 수 없을 정도로 너무 웃자라게 되어 줄기는 절간이 길고 가늘게 웃자라 스스로 지탱하기 어려워지고 넓은 잎은 서로 겹쳐져 아랫 잎은 햇빛을 받지 못해 일찍 노화가 진행되어 하위 잎부터 마르게 됨과 동시에 포기 사이로 잎과 줄기 사이로 통풍이 안되어 병균(곰팡이 진균 및 세균성 병 등)이 침투되기 쉬워지는 환경이 진행 됨
또한 작물 자체 세포는 커지는데 반해 세포막을 얇아져 병·충해로부터 안전하지 못하게 된다.
※ 질소는 외형적으로 몸집만 키울 뿐 세포막을 튼튼하게 하지는 못함.
※ 한 예로 고추 포기가 통째로 죽어가는 역병도 그 첫째 원인이 질소과잉임.
※ 위 2가지 피해는 용탈이 잘 안 이루어지는 비닐하우스 등에서 많이 나타남으로
비닐하우스 등에는 휴경기에 물을 충분히 살포하여 용탈을 시켜주어야 함.
사) 어떠한 토양과 작물에 N, K, P를 시비하였을 경우
N(질소) 성분은 제일먼저 작물에 흡수되어 효과를 보이지만 대신 토양에서 제일 먼저
사라지는 것도 질소(N) 성분의 비료임.
※ 따라서 질소비료를 밑비료로 시비하였다면 약 한달 전·후로 웃비료(추비) 처리를 해주어야
함.
※ 비료제조·생산 기업에서 이 부분을 생각하여 질소비료에다가 코팅을 해서 완효성 비료로
생산하는 경우도 있으나 코팅된 완효성 비료는 상당히 비쌈.
아) 질소 부족시에는 줄기와 잎이 크지 않게 되고 잎 엽록소가 부족하여 잎 전체가 황변을 진행하며 하위 잎을 떨어지게 된다.(이유는 잎에 양분이 부족하면 식물은 스스로 생존하기 위해 오래 된 하위 잎을 떨어뜨리고 거기에 있는 양분을 새 잎으로 옮기는 과정을 진행함)
[ 질소비료 종류 ]
일반적으로 질소비료는 크게 퇴비, 유박 등의 유기질 비료와 요소 아니면 유안 등의 무기질 비료로 나뉘는데 유기질 비료의 질소 함유량은 종류마다 다르다.
※ 퇴비 또는 유박 등은 대부분 밑비료로 사용되지만 웃비(추비)로는 사용하지 않는다.
동물성 단백질을 발효시킨 것일수록 질소 함유량은 높고 식물성 보다는 가축 분뇨가 더 높은데 가축분 중에서도 계분이 훨씬 높고 다음은 돈분, 우분 순으로 질소함량이 높다.
순수한 계분이 깻묵 발효된 것에서 질소함량비는 4~5%정도이고 화학비료인 유안이 20%, 요소는 함량이 46%정도로 요소와 유안비료는 함유량 면에서 큰 차이를 보임.
1. 요소비료 → 질소외에 다른 성분은 없음.
( 토양 시비, 엽면시비의 경우 일부는 공기에 의하여 원래 성분인 암모니아 가스로
휘발됨.
→ 특히 알칼리 성분과 결합 시 휘발량은 매우 높아지게 됨.
→ 암모니아 가스 농도가 높아지면 작물에 위해를 가하게 됨.(특히 어린 모 등)
→ 따라서 질소 비료 시비 후에는 반드시 흙을 덮어주는 것이 좋다.
2. 유안비료(황산암모늄, 질소 함유량은 요소의 50%정도) → 황 성분이 들어 있음
(맛, 향기, 색깔, 당도 업그레이드화가 필요한 작물에 효과를 준다.)
3. 질소 성분 함유비료중 무기질(화학 비료)는 요소비료를 비롯, 황산암모늄, 질산암모늄, 염화암모늄, 석회질소 등 다양한데 공통적으로 질소의 성분이 함유되어 있으나 제조 원료가 다르므로 그 특성 또한 다른 면이 있으며 공통적으로는 약간의 속도차이는 있으나 석회질소비료를 제외한 나머지는 모두 속효성이면서도 빨리 용탈이 되는 특성을 지니고 있음.
(따라서 밑비료로 질소 비료를 시비한 경우 약 한달쯤 질소 비료를 또 다시 웃비료로 다시 추비해주는 것이 좋다.(다만, 노지와 하우스는 차이가 있으며 노지도 멀칭과 무멀칭에도 차이를 보임.)
[ 질소 비료 시비 3가지 형태 ]
1. 유기태 질소 공급 → 퇴비 등 유기물을 통해 질소 공급
※ 유기태 질소는 작물이 바로 흡수 하지 못함으로 유기물속에서 분해 → 토양 속 미생물에 의해 무기 형태의 질소인 암모니아태 질소로 변화됨.
※ 유기물이란 동·식물 또는 생명체에 의해 만들어진 물질로 분자구조에 탄소(C)가 들어 있음.
※ 무기물이란 유기물이 아닌 물질로 탄소(C)가 들어있지 않음
※ 탄소(C)는 생명체를 이루는 중요한 소스
※ 토양 속에서 위 형태로 생성된 암모니아태 질소는 작물의 뿌리를 통해 흡수됨.
2. 유안비료 공급 → 토양 시비로 공급
유안이 토양 속 수분이나 물에 녹으면 암모니아태 질소가 생성 → 뿌리에서 바로 흡수
(질소 비료 중 가장 먼저 작물이 흡수 할 수 있게 된다.)
※ 요소비료도 작물이 흡수가 빠른 편이지만 사실 상 질산태 질소보다 암모니아태 질소가
더 빨리 이동하여 흡수 된다.
※ 우리가 가장 많이 쓴다고 하는 요소의 질소 형태는 요소태. 즉, 아미드태 질소라고 하는데
사실 이 형태의 질소로는 뿌리가 바로 흡수 할 수 없음.
※ 아미드태 질소가 작물에 흡수되기 위해서는 토양 속에 녹아 암모니아 형태의 질소로 바뀌
면 그때서야 비로소 뿌리에 흡수된다.
※ 단점은 암모니아태 질소는 토양 속에 오래 머물지 못하고 공기중에 휘발이 빠르고 비가
오면 용탈이 잘 된다. 하지만 토양 속 미생물에 의해 아질산 형태의 질소. 즉, 아질산태
질소로 바뀌어 지며 시간이 흐를수록 이러한 아질산태 질소는 다시 미생물에 의해 질산태
질소로 바뀌어 질소 순환과정을 거치게 된다.(이 과정은 토양 상태에 따라 약1~2주간 정도
면 순환과정이 진행됨.)
※ 따라서 작물이 암모니아태 질소를 흡수하는 기간이나 양은 생각 외로 적을 수 밖에 없으며
대부분 작물이 흡수하는 것은 질산태 질소라고 할 수 있음.
[ 질산태 질소 종류 ]
질산암모늄 비료, 질산칼슘 비료, 질산칼륨 비료
- 특징 : 토양시비하면 녹아서 바로 작물이 흡수함으로 효과도 빠르고 땅 속에서 변하지 않고
암모니아 가스가 발생되지 않으나 이 역시 빗물에 쉽게 용탈되어짐.
※ 토양은 음전기를 띤 음이온이며 질산태 질소도 음이온임으로 토양 속에 질소가 오래 머물 수 있는 환경이 아니며 빗물에 의해 쉽게 용탈 됨. 따라서 질소비료는 후에 추비(웃비료)를 진행해주어야 함.
※ 암모니아태 질소(NH₄⁺)는 양이온임으로 토양(음이온를 띰)이기에 토양에 잘 달라 붙지만
미생물이 가만히 두지 않음. → 질산태 질소로 바뀌게 됨
질산태 질소(NO₃⁻)는 음이온임으로 토양(음이온를 띰)과 서로 밀어낼려고 하는 성질이 있
으며 이 역시 빗물에 의해 쉽게 용탈되며 공기중으로 휘발성이 강함
[ 질소비료 용탈 해결방법 ]
1. 질소비료를 알갱이로 코팅하여 서서히 녹아지도록 하는 방법
2. 질산화 미생물의 활동을 억제하는 억제제 활용 방법
[ 질소비료의 뿌리 흡수 과정 ]
암모니아태 질소(흡수되는 양이 그렇게 많지 않음)는 잎에서 광합성 작용으로 생성되어진 탄수화물과 만나 아미노산과 단백질로 합성되어 작물의 몸체 여러 곳 등 필요한 곳으로 이동하게 됨.(줄기가 크고 잎이 나오는 대로 옮겨져서 작물이 빠르게 성장하는 효과를 가져다 줌.)
이후 암모니아태 질소는 질산태 질소로 변화(미생물에 의해 산화와 환원과정)하게 되며
질산태 질소는 식물체 내의 환원효소에 의해 다시 암모니아태 질소로 바뀌는 이온 치환을 통한 산화·환원 과정이 일어남.
즉, 먼저 흡수된 암모니아태 질소가 뿌리에 흡수되어 탄수화물과 만나 아미노산 또는 단백질로 합성된 후 시간이 흘러 줄기나 잎에서도 합성과정이 일어남.(이게 바로 식물의 산화와 환원과정임.)
이 부분은 바로 식물이 질소에 대한 합성(이온 결합과 치환)과 환원과정이다.
[ 작물의 생장기와 질소의 역할 ]
작물의 일생은 크게 영양생장기와 생식생장기로 나뉜다.
예로 옥수수가 씨앗에서 발아되어 모종기를 거쳐 키도 커지고 잎도 커지는 시기를
영양생장기로 하고 꽃이 피고 옆매가 익는 과정을 생식 생장기라 하는데
어떤 작물이든 영양생장기에는 무조건 질소가 필요하며 생식생장기에도 영양생장기 보다는
덜 필요하지만 여전히 필요함.
[ 그 외 참고사항 ]
질소를 살포하면 토양에서는 암모니아 형태의 질소로 변하게 되며 작물이 일부를 흡수하게
되며 일부는 토양에 남아 질산태 질소로 바뀌어 작물이 다시 흡수하게 되는데
그 흡수된 질산태 질소도 작물체 내에서는 암모니아태 질소로 다시 환원되어 잎에서 만들어진 탄수화물과 합쳐 단백질을 만들어 작물의 성장에 이용된다.
이때 질소과잉이 되면 이 과정에 불균형이 일어나게 된다.
과도한 질소의 흡수가 과도한 탄수화물의 소모를 유발하니 광합성에서 이루어진 포토당, 녹말이 열매로 갈 것이 부족해진다.
이런 현상은 광합성 량이 적어지는 햇빛이 부족한 장마기에 더욱 심해진다.
잎은 무성해도 열매는 크지 않거나 심해지면 낙과현상이 많이 발생된다.
(과실목의 열매 낙과 원인 중 질소과잉으로 인한 것이 바로 이 원리 때문임.)
특히 낙과가 심한 과수는 감을 들 수 있는데 아무 이유없이
감이 많이 떨어지면 첫째 질소과다공급을 점검해야 한다.
문제가 여기에서 그치면 좋은데 광합성에서 얻은 양분이 질소와 화합 단백질을
만들 때 광합성에서 얻어진 양분이 부족하면 작물체에는 질소가 남아 있을 수
밖에 없다.
이런 경우 질소 과잉 작물에는 진딧물을 비롯해 별별 해충들이 득실거리게 된다.
잎도 연하니 더욱더 성찬이 되는 셈이다.
질소과잉 작물은 설혹 열매가 익는다 해도 맛이 없다.
벼도 쌀 맛이 없고 과일도 단 맛이 떨어진다.
심지어 엽채류도 쓴맛을 낸다.
이유는 잎에서 광합성으로 만들어진 탄수화물 당분이 질소와 어울려 아미노산, 단백질을
만드는데 투입되니 열매나 잎으로 갈 당분이 모자르게 때문이다.
작물이 질소의 과도한 흡수로 인해 칼슘의 흡수가 방해는 받게 되는 것이다.
특히 질소는 칼슘과 짝을 이루어 세포를 형성해 가야 하는데 그 타격이 더 클 수 밖에
없다.
물론 칼슘 부족현상을 질소 혼자 책임을 물을 수는 없지만 칼슘 부족 현상이
다양한 형태로 일어나게 되는데 첫째 잎 끝이 마르거나 말린다.
그리고 열매가 갈라지거나 썩어 들어간다. 사과의 경우 꼭지 부분이 터지거나
심하면 표면이 울퉁불퉁 고두병이 걸리게 되고 토마토의 경우 표면이 갈라지다가 심하면 아래 배꿉 부분이 움푹 썩어 들어가게 된다.
고추도 끝부분이 꼭 탄저병처럼 썩어 들어가게 되는데 자세히 보면 탄저병처럼 나이테는 없으며 감자의 경우 속에 구멍이 생기거나 비게된다 마치 붕소부족과 비슷한 모습을 띠게 된다. 끝.
23년 6월 26일
8
10